位置:成果数据库 > 期刊 > 期刊详情页
基于谱聚类和扩展朴素贝叶斯的混合推荐算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]上海理工大学光电信息与计算机工程学院,上海200093, [2]上海理工大学计算机软件技术研究所,上海200093
  • 相关基金:国家自然科学基金资助项目(61170277,61472256);上海市教委科研创新重点项目(12zz137);上海市一流学科建设项目(S1201YLXK)
中文摘要:

随着电子商务的发展,基于协同过滤的推荐算法越来越受欢迎,与此同时,该算法的缺陷也越来越明显,如数据稀疏性、系统可扩展性等。为此,提出一种混合型推荐算法。该混合算法首先利用谱聚类方法,根据图谱理论将聚类问题转换为图的分割问题,寻找相似数据群;然后利用扩展逻辑回归的朴素贝叶斯算法对聚类结果建立预测模型;最后使用增量式更新的方法,在不全部重新训练模型的基础上,对模型进行局部修改。实验结果表明,该算法较传统的协同过滤算法在一定程度上克服了数据稀疏性和冷启动问题,降低了计算复杂度,并且具有更好的准确性和可扩展性。

英文摘要:

Collaborative fihering-based recommender algorithm have become extremely popular in recent years, due to the development of E-commerce. By the way, it has some limitations such as, sparsity, scalability. This paper developed a hybird rec: ommendation method to overcome the limitations of CF. Firstly, the hybrid method used spectral clustering to transform the cluster to segment, and found similar segments. Secondly, the hybrid method applied the extended logistic regression on naive Bayes to build prediction model. Finally, the hybrid method used the increment update schemes to refresh the ratings and improved the precision of the system. The experimental results demonstrate the proposed approach overcomes sparsity and scalability problem to a certain extent, has higher accuracy,lower complexity, scalability than traditional collaborative filtering.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049