位置:成果数据库 > 期刊 > 期刊详情页
PARAMETERS INVERSION OF FLUID-SATURATED POROUS MEDIA BASED ON NEURAL NETWORKS
  • ISSN号:0894-9166
  • 期刊名称:《固体力学学报:英文版》
  • 时间:0
  • 分类:TB302[一般工业技术—材料科学与工程]
  • 作者机构:[1]Natl Jiaotong Univ, Inst Mech, Beijing 100044, Peoples R China, [2]Chinese Acad Sci, Inst Mech, LNM, Beijing 100080, Peoples R China
  • 相关基金:the National Natural Science Foundation of China (Nos.19872002 and 10272003);Climbing Foundation of Northern Jiaotong University
中文摘要:

The multi-layers feedforward neural network is used for inversion of material constants of flu-id-saturated porous media.The direct analysis of fluid-saturated porous media is carried out with the bound-ary element method.The dynamic displacement responses obtained from direct analysis for prescribed materi-al parameters constitute the sample sets training neural network.By virtue of the effective L-M training algo-rithm and the Tikhunov regularization method as well as the GCV method for an appropriate selection of regu-larization parameter,the inverse mapping from dynamic displacement responses to material constants is per-formed.Numerical examples demonstrate the validity of the neural network method.

英文摘要:

The multi- layers feedforward neural network is used for inversion ofmaterial constants of fluid-saturated porous media. The direct analysis of fluid-saturated porousmedia is carried out with the boundary element method. The dynamic displacement responses obtainedfrom direct analysis for prescribed material parameters constitute the sample sets training neuralnetwork. By virtue of the effective L-M training algorithm and the Tikhonov regularization method aswell as the GCV method for an appropriate selection of regu-larization parameter, the inversemapping from dynamic displacement responses to material constants is performed. Numerical examplesdemonstrate the validity of the neural network method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《固体力学学报:英文版》
  • 主管单位:
  • 主办单位:中国力学学会
  • 主编:郑泉水
  • 地址:武汉市珞喻路1037号华中科技大学南一楼西北508室
  • 邮编:430074
  • 邮箱:amss@mail.hust.edu.cn
  • 电话:027-87543737
  • 国际标准刊号:ISSN:0894-9166
  • 国内统一刊号:ISSN:42-1121/O3
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:133