以新疆西王母像为工程背景,对非规则高耸佛像进行了测压风洞试验,建立了复杂的三维钢骨架有限元模型,计算了结构的动力特性,并利用ANSYS参数化设计语言,编制了能够精确求解非规则高耸佛像风振响应的程序.在此基础上,通过风洞试验所得的风压系数,计算得到254个测点的荷载时程向量,并加载至有限元模型,计算了30个风向角下佛像各关键测点处的风振系数.研究结果表明:风洞实验所得的风压系数时程数据的精度较高,可以满足佛像风振系数的计算要求;对于非规则高耸佛像,其自振频率分布密集,基阶振型不是主控振型,不能直接采用《规范》所建议的风振系数,而应重新计算;风向角的变化对佛像风振系数的影响十分显著,应对最不利的风向角进行抗风验算.
Based on statue of west queen mother in Xinjiang, wind tunnel test for irregular towering figure of buddha is carried on for the first time. Complex 3D FEA model of steel frame is established to compute structural dynamic characteristics. By using ANSYS parametric design language, one calculation program is prepared to calculate the wind-induced vibration of irregular towering figure of Buddha. Load schedule vector, which is computed through wind pressure factor of 254 measure points, is applied in FEA model to calculate wind fluttering factor of Buddha in 30 wind angles. The following conclusions are obtained. Precision of wind pressure factors coming from wind tunnel test is high e- nough for the calculation of wind fluttering factor of Buddha. Frequency distribution of irregular towering figure of Buddha is intensive and the first modal is not master control mode. So, wind fluttering factor suggested in code can not be used directly, should be computed again. Wind angle has a significant effect on wind fluttering factor of Buddha. So, checking on the most disadvantageous wind angle should be done.