由把紧张坡度弹性合并到古典 Bernoulli-Euler 横梁和 Timoshenko 横梁模型,在 micro/nanobeams 的波浪繁殖的尺寸依赖者特征被学习。分散关系的明确的表达明确地为两个紧张坡度横梁模型被导出,并且为不同材料长度规模参数(MLSP ) 介绍了。为两个现象学的 sizedependent 横梁模型,有增加的尖频率,阶段速度和组速度增加挥动数字。然而,速度比率为不同横梁模型接近不同价值,显示 asymptotic 速度比率的有趣的行为。现在的理论也与非局部的连续统横梁模型相比。
By incorporating the strain gradient elasticity into the classical Bernoulli-Euler beam and Timoshenko beam models, the size-dependent characteristics of wave propaga- tion in micro/nanobeams is studied. The formulations of dis- persion relation are explicitly derived for both strain gradi- ent beam models, and presented for different material length scale parameters (MLSPs). For both phenomenological size- dependent beam models, the angular frequency, phase veloc- ity and group velocity increase with increasing wave num- ber. However, the velocity ratios approach different values for different beam models, indicating an interesting behavior of the asymptotic velocity ratio. The present theory is also compared with the nonlocal continuum beam models.