位置:成果数据库 > 期刊 > 期刊详情页
基于多尺度线调频基稀疏信号分解的轴承故障诊断
  • 期刊名称:机械工程学报
  • 时间:0
  • 页码:88-95
  • 语言:中文
  • 分类:TH113.1[机械工程—机械设计及理论] TH165.3[机械工程—机械制造及自动化]
  • 作者机构:[1]湖南大学汽车车身先进设计制造国家重点实验室,长沙410082
  • 相关基金:国家自然科学基金(50875078)、国家高技术研究发展计划(863计划,2009AA042414)和教育部长江学者与创新团队发展计划(5311050050037)资助项目.
  • 相关项目:多尺度线调频基稀疏信号分解方法及其在机械故障诊断中的应用研究
中文摘要:

摘在线调频小波路径追踪算法和稀疏信号分解的基础上,提出一种基于多尺度线调频基的稀疏信号分解方法,并将其应用于非平稳转速下的轴承故障诊断。基于多尺度线调频基的稀疏信号分解方法,根据信号的特点,自适应地选择多尺度的线调频基函数对信号进行投影分解。由于基函数库多尺度特性,使得该方法比以往采用单一尺度库函数的稀疏信号分解方法更适用于分解频率呈曲线变化的非平稳信号。在非恒定转速下,当轴承出现故障时,振动信号中与故障对应的特征频率将会随转速变化而波动,采用基于多尺度线调频基的稀疏信号分解方法能准确获得非平稳转速下轴承故障特征频率随时问的变化情况,进而对其状态和故障特征进行识别,仿真算例和应用实例说明了此方法的有效性。

英文摘要:

Based on the chirplet path tracing algorithm and sparse signal decomposition, a new sparse signal decomposition method based on multi-scale chirplet is proposed and applied to the decomposition of bearing failure vibration signals under non-stationary speed. The proposed method projects the signals onto the multi-scale chirplet base functions, and chooses the base functions adaptively according to the signal characteristics. Because of the multi-scale features of the base functions, this method is superior to the old sparse signal decomposition method, which adopts a single scale, and is more applicable to the decomposition of non-stationary signals whose frequency has a curve change. When the bearing has a failure, the relevant characteristic frequency in the vibration signal will fluctuate with the change of speed. The proposed method is very suitable to obtain the bearing failure characteristic frequency which fluctuates with the time, so it can be used to identify the falures of bearings. Simulation and a practical application example proves the effectiveness of the method.

同期刊论文项目
同项目期刊论文