显拟凹函数在非线性规划问题中起着重要的作用。在已有文献基础上给出了显拟凹函数的一个新性质:设XRn是凸集,g:X→R是显拟凹函数,如果对y1,y2,…,yn∈X,满足g(yj)〉mini≠jg(yi),那么对λi〉0(i=1,…,n),∑ni=1λi=1,有g∑ni=1λiyi〉mini=1,…ng(yi)。本文的结果推广了已有的结论。
Explicitly quasiconcave funclions play a dominant role in nonlinear programming problem. Based on the earlier works, thefollowing rest, h has been derived in this paper: Let g:X→R be explicitly quasiconcave function, where X Rn is convex, if for any y1,y2,…,yn∈X ,g(yj) 〉ming i≠j (yi), then for any λi〉0(i=1,…,n),∑ni=1λi=1, we haveg∑ni=1λiyi〉mini=1,…ng(yi). This result generalizes the known result.