本文从理论模拟和实验角度研究了钙钛矿太阳能电池的伏安特性,并着重探讨了由于界面电荷输运受限而产生的S形特征.理论模拟表明,当电池界面电荷输运速度逐渐降低时,出现界面电荷积累,影响电池输出性能.实验研究表明,当电池的背接触,光阳极等界面电荷输运速度受限时,即出现S形伏安特性,降低电池效率.然而,由于电子和空穴在界面输运性质方面的差异,以及电池中可能存在的独特的界面能带结构,不同界面电荷输运受限而产生的S形伏安曲线又各具特征,与电池内部实际的电荷分布以及输运方向有关.本文的研究结果有助于阐明钙钛矿太阳能电池中存在的影响电荷输运的界面因素,进而为界面设计和界面优化提供理论依据.
Analysis of the DC current-voltage(I-V) characteristics is an effective approach to investigate the charge transport properties in a solar cell. The perovskite solar cell attracted wide research interest in the past two years due to their outstanding photovoltaic capacity. However, the charge transport characteristics and working principles of this kind of cells have not been clearly clarified. In this work, the I-V characteristics of the perovskite solar cell have been investigated from the experimental and theoretical perspective views. Moreover, the S-shaped I-V feature coming from the limitation of interfacial charge transport was focused on. With a series connected diode model, the I-V characteristics of the solar cell are investigated and simulated. It is found that the charge accumulation appears gradually when the interfacial charge transport velocity is decreased, lowering the output of the cell. When the interfacial charge transport decreases gradually, the short-circuit current density and the fill factor of the cell also decrease obviously. In experiments,limitations of charge transport at the front and back contacts of the cell have been designed, successfully producing varied S-shaped I-V features. It is found that both in the hole transport material-free and in the p-i-n perovskite solar cells,the S-shaped I-V characteristics can appear. Moreover, the origins of these features in various experimental conditions have also been discussed, which can be the energy barriers or large charge transport resistances in the cell. These energy barriers and resistances will lower the charge transport velocity and may cause charge accumulation, thus leading to the appearence of the S-shaped features. Meanhiwle, the emerging S-shaped I-V curves all have their own features,which may be due to the specific interfacial energy band structures. Thus, to promote the cell performance, the charge transport and interface energy barrier should be attached importance to and carefully designed. This work directly shows t