摘要:用弦图构造了与Lusztig的量子群U=Uq(sln)对应的2一范畴甜和功.其中功是u的Karoubi包络.通过构造功的2-表示,可以证明功的Grothendieck环Ko(u)同构于代数AO,其中U是U的幂等变形,而AD是T3的整形式.由此得到的范畴功就是量子仿射代数Uq(sln)的范畴化.
We construct 2-categories uand U using string diagrams corresponding to Lusztig's quantum group U = Uq(sln). Here U is the Karoubi envelope of u. By constructing the 2- representation of Lt, we also prove that the Grothendieck ring K0(U) ofU is isomorphic to the algebra U, where U is the idempotented modification of U and U is the integral form of l). We obtain that the category U could be considered as the categorification of quantum affine algebra Uq(sln).