位置:成果数据库 > 期刊 > 期刊详情页
基于数据挖掘的视频镜头分类方法
  • ISSN号:0254-0037
  • 期刊名称:《北京工业大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京工业大学信号与信息处理研究室,北京100124
  • 相关基金:国家自然科学基金资助项目(61003289); 北京市自然科学基金资助项目(4102008); 教育部新世纪优秀人才支持计划资助项目(Q2002012200901)
中文摘要:

提出了一种基于数据挖掘的视频镜头风格自动分类方法.该方法首先进行镜头边界检测和关键帧提取,然后基于关键帧和镜头分别提取了视频的颜色和运动等特征,并利用决策树技术在大量的训练数据中挖掘这些特征与镜头类别之间的潜在规律,最后利用这些规律对新的视频镜头进行分类.实验结果表明,与基于SVM的方法相比,本文方法不仅能获得较好的检测准确率,而且获取的规则易于理解.

英文摘要:

A novel classification method of video shot genre based on data-mining is proposed in this paper.First,shot boundary detection and key frames extraction are performed.Second,some visual features such as color and motion are extracted for the key frame and shots.Third,decision tree is applied to discover the rules between these features and shots classes from numerous training data.Finally,these rules are exploited to classify the new video shots.Experimental results show that compared with the method based on SVM(support vector machine),the proposed method can achieve higher detection accuracy and the rules obtained are easy to comprehend.

同期刊论文项目
期刊论文 20 会议论文 12 获奖 6 专利 4 著作 1
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924