让 G 是最大的度 Δ 的一张图。如果没有 bichromatic 周期, G 的合适的顶点着色是非循环的。它被 Alon 等证明。[图的非循环的着色。随机的结构算法, 1991, 2 (3 ) :277 −288 ] 那 G 与 O 承认非循环的着色(有 O 的 Δ 4/3) 颜色和合适的着色(Δ (k−1)/(k−2)) 渲染以便有 k 顶点的路径都不是为固定整数 k≥5 的 bichromatic。在这份报纸,我们在二着色上面联合并且证明如果 k≥5 和 G 不包含长度 4 的周期,那么, G 与 O 承认非循环的着色(Δ (k−1)/(k−2)) 渲染以便有 k 顶点的路径都不是 bichromatic。
Let G be a graph of maximum degree A. A proper vertex coloring of G is acyclic if there is no bichromatic cycle. It was proved by Alon et al. [Acyclic coloring of graphs. Random Structures Algorithms, 1991, 2(3): 277-288] that G admits an acyclic coloring with O(△4/3) colors and a proper coloring with O(△(k-1)/(k-2)) colors such that no path with k vertices is bichromatic for a fixed integer k ≥5. In this paper, we combine above two colorings and show that if k ≥ 5 and G does not contain cycles of length 4, then G admits an acyclic coloring with O(△(k-1)/(k-2)) colors such that no path with k vertices is bichromatic.