让 Cn 是有 0 的一个围住的星形的圆形的领域。在这份报纸,我们上介绍 holomorphic mappings Mg 的一个班。让 f (z) 一局部地使 biholomorphic 印射在上正常化以便 J-1f (z) f (z) Mg 和 z=0 是 f (z) 的零顺序 k+1 - z。我们为 f (z) 获得生长和盖住的定理。作为推论,特别,我们统一并且概括许多已知的结果。而且鉴于推论的证明,在星形的 mappings 的子类之中的必要关系被显示出。
Let Ω∈ C^n be a bounded starlike circular domain with 0 ∈ Ω. In this paper, we introduce a class of holomorphic mappings Mg on Ω. Let f(z) be a normalized locally biholomorphic mapping on Ω such that Jf^-1 (z) f(z) ∈Mg and z = 0 is the zero of order k+1 of f(z) - z. We obtain the growth and covering theorems for f(z). Especially, as corollaries, we unify and generalize many known results. Moreover, in view of proofs of corollaries, the essential relations among the subclasses of starlike mappings are shown.