位置:成果数据库 > 期刊 > 期刊详情页
A Hybrid Differential Evolution Algorithm Integrated with Particle Swarm Optimization
  • ISSN号:1671-0444
  • 期刊名称:Journal of Donghua University,Natural Science
  • 时间:2014.2.1
  • 页码:93-96
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP277[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education (East China University of Science and Technology), Shanghai 200237, China
  • 相关基金:Project(2013CB733605)supported by the National Basic Research Program of China; Project(21176073)supported by the National Natural Science Foundation of China; Project supported by the Fundamental Research Funds for the Central Universities,China
  • 相关项目:基于多元统计与动态模拟的工业反应状况多尺度在线监测研究
中文摘要:

A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a classifier to distinguish various states on the output map, which can visually monitor abnormal states. A case study of the Tennessee Eastman(TE) process is presented to demonstrate the fault diagnosis and process monitoring performance of the proposed method. Results show that the SP-based SOM method is a visual tool for real-time monitoring and fault diagnosis that can be used in complex chemical processes.Compared with other SOM-based methods, the proposed method can more efficiently monitor and diagnose faults.

英文摘要:

A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a classifier to distinguish various states on the output map, which can visually monitor abnormal states. A case study of the Tennessee Eastman(TE) process is presented to demonstrate the fault diagnosis and process monitoring performance of the proposed method. Results show that the SP-based SOM method is a visual tool for real-time monitoring and fault diagnosis that can be used in complex chemical processes.Compared with other SOM-based methods, the proposed method can more efficiently monitor and diagnose faults.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《东华大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:东华大学
  • 主编:王善元
  • 地址:上海市延安西路1882号
  • 邮编:200051
  • 邮箱:xuebao@dhu.edu.cn
  • 电话:021-62373643
  • 国际标准刊号:ISSN:1671-0444
  • 国内统一刊号:ISSN:31-1865/N
  • 邮发代号:4-123
  • 获奖情况:
  • 1996年获纺织工业总会核心期刊,1996年高校学报评比二等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:6715