背景:羟基磷灰石具有优良的生物相容性,但目前缺少纳米羟基磷灰石/TiO2 纳米管复合物生物相容性的相关研究。 目的:分析纳米羟基磷灰石/TiO2纳米管复合物的生物相容性。 方法:先通过阳极氧化技术在钛金属表面制备TiO2纳米管,后采用电沉积技术制备纳米羟基磷灰石/TiO2 纳米管复合物,在扫描电镜下观察复合物的表面形貌。将纳米羟基磷灰石/TiO2纳米管复合物、TiO2纳米管形貌钛金属和商业钛金属分别与小鼠成骨细胞MC-3T3-E1共同培养,观察细胞在支架上的黏附、增殖及凋亡。 结果与结论:通过改变阳极氧化条件及磁场条件能制备不同管径及管长的TiO2纳米管,以及不同形貌的纳米羟基磷灰石/TiO2纳米管复合物。倒置显微镜观察共培养3 d后,TiO2 纳米管形貌钛金属及纳米羟基磷灰石/ TiO2纳米管复合物周围的细胞明显增殖,细胞形态良好,排列规则,细胞增殖情况优于商业钛金属组。扫描电镜观察共培养3 d后,细胞在TiO2纳米管形貌钛金属及纳米羟基磷灰石/TiO2纳米管复合物上生长良好,可见大量细胞伪足附着于其上;纳米羟基磷灰石/TiO2纳米管复合物组的细胞凋亡率7.8%小于TiO2纳米管形貌钛金属组的9.4%及商业纯钛金属组的13.5%,表明纳米羟基磷灰石/TiO2纳米管具有良好的生物相容性。
BACKGROUND: Hydroxyapatite has excellent biocompatibility, but biocompatibility of nano-hydroxyapatite/TiO2 nanotube composites is rarely reported. OBJECTIVE: To evaluate the biocompatibility of nano-hydroxyapatite/TiO2 nanotube composites. METHODS: First, the TiO2 nanotubes were fabricated on the surface of the titanium by anodic oxidation technique. Second, the nano-hydroxyapatite/TiO2 nanotube composites were fabricated by electrodeposition technique. The surface morphology of the composites was observed by scanning electron microscopy. Mouse osteoblasts MC-3T3-E1 were co-cultured with the nano-hydroxyapatite/TiO2 nanotube composites, TiO2 nanotubes and titanium, and commercially pure titanium to observe the cell adhesion, proliferation and necrosis on scaffolds. RESULTS AND CONCLUSION: The morphology of the TiO2 nanotubes and nano-hydroxyapatite/TiO2 nanotube composites could be controlled by altering the conditions of the anodic oxidation and electrodeposition. Under the inverted microscope, after 3 days of co-culture with TiO2 nanotubes and nano-hydroxyapatite/TiO2 nanotube composites, MC-3T3-E1 cells proliferated well with regular shape and arrangement that were superior to those on commercially pure titanium. Under scanning electron microscope, the cell were adhered and proliferated well on the surface of the TiO2 nanotubes and nano-hydroxyapatite/TiO2 nanotube composites after 3 days. Apoptosis rate of the cells was significantly reduced on the surface of nano-hydroxyapatite/TiO2 nanotube composites (7.8%) compared with TiO2 nanotubes (9.4%) and commercially pure titanium (13.5%), indicating nano-hydroxyapatite/TiO2 nanotube composites have good biocompatibility.