针对三维Stokes问题,本文构造出了一个39参数的非协调四面体单元.分析了单元的稳定性,并在三维空间中证明了该单元关于Stokes问题收敛,得到了最优收敛阶O(h^2).
This paper presents a 39-parameter nonconforming tetrahedral element for the three-dimensional Stokes problem. The newly constructed element is proved to be stable and convergent for Stokes problem,the optimal rate of convergence O(h^2) is obtained.