位置:成果数据库 > 期刊 > 期刊详情页
基于LS-SVM的煤气发生炉关键参数预测
  • ISSN号:1672-7207
  • 期刊名称:《中南大学学报:自然科学版》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]韶关学院计算机科学学院,广东韶关512024
  • 相关基金:国家自然科学基金资助项目(61101134);韶关市科技计划项目(韶科(管)[2010]-11)
作者: 蒋少华[1]
中文摘要:

根据煤气炉现场采集的数据,建立一种基于最小二乘向量机(LS-SVM)的预测模型,预测煤气炉关键参数炉出温度、CO2含量。模型以主要工艺参数作为影响因素,以炉出温度、CO2含量为影响对象,建立影响因素和影响对象之间的复杂非线性关系,构造煤气炉参数LS-SVM预测模型,再运用奇异值分解的方法辨识模型参数,最后将模型用于煤气炉参数预测。研究结果表明:该模型能及时跟踪炉况参数的变化,预测结果与实测值较吻合,准确度与处理速度都优于神经网络预测模型,实际预测误差小于2%,可用于煤气炉生产过程的现场操作指导。

英文摘要:

The gas furnace temperature and CO2 content in gas are the key parameters which reflect whether the furnace condition is normal. In order to keep the gas furnace (GF) working smoothly, a model based on least squares support vector machine (LS-SVM) was presented. With the main data samples as influence factors, and with the furnace temperature and CO2 content in gas as influence object, the complex nonlinear relations among the influence factors and influence objects were fitted by LS-SVM model. Firstly, the predicting model was constructed, and then a numerical algorithm for subspace system (singular value decomposition, SVD) was utilized to identify the model. Finally, the model was used to predict the furnace parameters. The results show that the prediction accuracy and treatment speed by this model are much higher than those of back-propagation neural networks(BPNN), and the practical prediction errors are less than 2.0%.The monitoring model is applied in the assistant decision-making system of a gas furnace.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中南大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:中南大学
  • 主编:黄伯云
  • 地址:湖南长沙中南大学校本部
  • 邮编:410083
  • 邮箱:zngdxb@csu.edu.cn
  • 电话:0731-88879765
  • 国际标准刊号:ISSN:1672-7207
  • 国内统一刊号:ISSN:43-1426/N
  • 邮发代号:42-19
  • 获奖情况:
  • 首届全国优秀科技期刊评比一等奖,第二届全国优秀科技期刊评比一等奖,首届中国有色金属工业优秀科技期刊评比一等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:20874