分析了中国6座大型铁路桥梁和26座大型公路桥梁中空心桥墩的设计情况,从墩高、壁厚比、薄壁宽厚比和剪跨比等方面对空心桥墩在中国的应用情况进行了评述。总结了新西兰、美国、欧洲、日本以及中国对空心桥墩抗震问题开展的试验研究和理论分析成果,指出了空心桥墩抗震研究存在的问题和进一步研究方向。分析结果表明:剪跨比大于10.0的高墩、壁厚比小于0.2或薄壁宽厚比大于10.0的薄壁墩在中国大型桥梁工程中获得了广泛应用;目前对空心桥墩抗震问题开展的研究集中于剪跨比在8.0以下的中低墩,对壁厚比小于0.2或薄壁宽厚比大于5.0的薄壁墩开展的研究非常少;合理的空心桥墩抗剪强度及抗震变形能力分析模型仍未建立;分析水下空心桥墩抗开裂措施,控制空心桥墩残余位移,采用新型结构和新材料提高空心桥墩抗震能力,应用现代试验技术研究空心桥墩抗震问题是未来重要的研究方向。
Design details of RC hollow bridge piers for 6 major railway bridges and 26 major highway bridges in China were analyzed. Pier height, web thickness to section width ratio, web width to thickness ratio and aspect ratio of pier used in China were reviewed. The experimental researches and theoretical analyses of seismic behaviors for RC hollow piers in New Zealand, America, Europe, Japan and China were summarized, and the existing problems and future research directions were pointed out. Analysis result shows that high piers with aspect ratio larger than 10.0, thin walled piers with web thickness to section width ratio less than 0.2 or web width to thickness ratio larger than 10.0 are commonly used in large bridges in China. Most of the researches have focused on the seismic behaviors of low and medium height piers with aspect ratio less than 8. 0, and few researches have been conducted forpiers with web thickness to section width ratio less than 0. 2 or web width to thickness ratio larger than 5.0. There is still not any reasonable shear strength and seismic deformation analysis model for hollow bridge piers. Some important research directions in the future include anti-cracking measures of hollow bridge pier under the water, residual displacement control of hollow bridge pier, improving the seismic behavior of hollow bridge pier by new structures and materials, and researching the seismic behavior of hollow bridge pier by modern experimental techniques. 1 tab, 10 figs, 60 refs.