位置:成果数据库 > 期刊 > 期刊详情页
边界子波谱方法中的一种奇异积分方法
  • ISSN号:1000-2758
  • 期刊名称:西北工业大学学报
  • 时间:0
  • 作者或编辑:3448
  • 第一作者所属机构:西北工业大学航天学院
  • 页码:已录用
  • 语言:中文
  • 分类:O422[理学—声学;理学—物理]
  • 作者机构:[1]西北工业大学航天学院,陕西西安710072
  • 相关基金:国家自然科学基金(10274059)资助
  • 相关项目:声辐射和声散射分析的边界子波谱方法
作者: 文立华|孙涛|
中文摘要:

提出了一种处理三维轴对称Helmholtz积分方程子波谱方法的奇异积分方法。对于三维轴对称和三维问题的Helmholtz积分方程,在积分奇异点构造一个小球面,然后减去三维Laplace方程核函数在该球面上的积分,消除奇异积分。算例表明该方法有较高的精度,计算方便,原理上可用于任意三维问题。

英文摘要:

Purpose. Although existing singular integral methods, such as Refs. 2, 3 and 4, are already pretty accurate and efficient, we are of the opinion that their precision and efficiency can be further improved. In the full paper we explain in detail our method, believed to be of better precision and more efficient~ in this abstract, we just sketch an outline of our explanation. In order to make our sketchy explanation better understood, we refer often to the equations in the full paper. In the three-dimensional and axisymmetric Helmholtz integral equations eqs. (4) and (5) in the full paper , the auxiliary interior spherical surfaces are selected at the singular points and the singular integrals are removed by subtracting the three dimensional Laplace kernel on corresponding spherical surfaces from eqs. (4) and (5). Then singular integrals can be turned into the elliptic integrals eq. (18) in the full paper which can be computed by analysis or the standard numerical methods. In the mathematical derivation, the equations preceding eq. (18) are of course necessary; for one reason or another, eqs. (19) through (22) are also necessary for our method. The radiation of a pulsating sphere is very efficiently solved using our new method, and the results, as compared with the analytical solution, show that the average deviation from the analytical solution is only 1.5%, thus confirming that our new method is of high precision.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西北工业大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:西北工业大学
  • 主编:胡沛泉
  • 地址:西安市友谊西路127号(西工大校园158号信箱)
  • 邮编:710072
  • 邮箱:xuebao@mwpu.edu.cn
  • 电话:029-88495455
  • 国际标准刊号:ISSN:1000-2758
  • 国内统一刊号:ISSN:61-1070/T
  • 邮发代号:52-182
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10173