证明了若G为不含4,5,6-圈的平面图,则λp,q(G)≤(2q…1)△(G)+6p+6q-6.这一结果暗含着对于△(G)≥12且不含4,5,6圈的平面图G,X(G2)≤|3△(G)/2]+1成立.因此对于这样一类图部分地证实了Wegncr猜想.
In this paper,we show that if G is a planar graph without 4,5,6-cycles, then(G)≤(2q…1)△(G)+6p+6q-6. This result implies that G,X(G2)≤|3△(G)/2]+1 holds for planar graphs with A(G) ≥ 12 and without 4,5,6-cycles. So Wegner's conjecture is partially confirmed for such a class of graphs.