为了对装配故障率进行定量研究,用最小二乘支持向量机(LSSVM)对装配故障率与属性之间的关系进行了建模。在该模型中对影响故障率的5M1E(Man,Machine,Material,Method,Measurement and Environment)因素用装配可靠性评价方法(Assembly ReliabilityEvaluation Method,AREM)提取的装配故障率属性进行了改进,建立了装配故障率的全属性模型;为提高求解效率以及使装配可靠性控制更具有目的性,用灰色关联分析对装配故障率的属性进行提取,得到了主要属性,并用遗传算法对主要属性建立的装配故障率模型进行参数优化。用灰色关联分析提取的主要属性的LSSVM模型与全部属性建立的LSSVM模型和主要属性建立的BP神经网络模型的装配故障率预测进行比较,结果表明用灰色关联分析的LSSVM故障率模型不仅建模简单而且还具有预测精度高等优点。
To get the relationship between assembly fault rate and its attributes,least squares support vector machine(LSSVM)is introduced to quantitatively study assembly fault rate.Aiming at the drawbacks of assembly reliability evaluation method(AREM),the attributes of assembly-fault-rate-affecting 5M1E(Man,Machine,Material,Method,Measurement and Environment) factors obtained by AREM are improved,hence the LSSVM model with all attributes is established.To reduce the time of calculating the assembly fault rate and provide the priority for assembly reliability improvement,grey relation analysis is applied to extracting the main attributes,at the same time genetic algorithm(GA)is used for parameter optimization in LSSVM.The assembly fault rate analysis results show that the method using grey relation analysis and least square support vector machine is simpler and more accurate compared with other methods such as LSSVM model using all attributes and BP neural network using main attributes.