位置:成果数据库 > 期刊 > 期刊详情页
基于小波重构与SVM-BPNN的动态过程在线智能监控
  • ISSN号:1000-6788
  • 期刊名称:《系统工程理论与实践》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TH165.4[机械工程—机械制造及自动化]
  • 作者机构:郑州大学商学院,郑州450001
  • 相关基金:国家自然科学基金(71272207,61271146)
中文摘要:

为了提高动态过程运行状态在线监控效率,提出了基于小波重构与支持向量(support vector machine,SVM)-反向传播神经网络(back propagation neural network,BPNN)相结合的在线智能监控方法.首先,运用离散小波变换对动态过程实测数据流进行重构,并提取其形状特征.其次,利用训练好的小波重构特征的SVM、均值特征的BPNN及重构后形状特征的SVM,对“监控窗口”内实测数据流进行异常模式识别.最后,应用该方法对某精密轴加工过程进行在线智能监控.结果表明:所提模型识别精度高、训练耗时少,其整体性能明显优于小波重构的BPNN模型与基于统计和形状特征的多分类支持向量机(multi-class support vector machine,MSVM)模型,是一种更为有效的动态过程在线智能监控方法.

英文摘要:

In order to improve the online monitoring efficiency, a novel monitoring method for dynamic process operating state is proposed by combining support vector machine (SVM), back propagation neural network (BPNN) and wavelet reconstruction. Firstly, discrete wavelet transform is used to reconstruct the measured data flow of dynamic process and extract shape features from reconstructed data series. Then, SVM based on wave reconstruction feature, BPNN based on mean feature and SVM based on shape feature from reconstructed data series are used to recognize the abnormal patterns of data flow in the "monitoring window". Finally, the proposed monitoring method is used to monitor the operating state of an axis machining process. Results indicate that the proposed monitoring method has a higher monitoring efficiency as compared to BPNN based on wavelet reconstruction and multi-class support vector machine (MSVM) based on statistical feature and shape feature, which has demonstrated its effectiveness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统工程理论与实践》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国系统工程学会
  • 主编:汪寿阳
  • 地址:北京市海淀区中关村东路55号
  • 邮编:100190
  • 邮箱:xtll@chinajournal.net.cn
  • 电话:010-82541407
  • 国际标准刊号:ISSN:1000-6788
  • 国内统一刊号:ISSN:11-2267/N
  • 邮发代号:2-305
  • 获奖情况:
  • 第三届中国出版政府奖提名奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国国家哲学社会科学学术期刊数据库,中国北大核心期刊(2000版)
  • 被引量:56095