利用分布式计算的高性能计算、传输和存储能力,解决常规集中式大规模GNSS数据处理中观测站规模受限和时效性差的问题。讨论了GNSS数据的分布式处理方法、算法设计、处理策略和对已有软件的利用,并对GNSS数据进行了分布式计算试验,试验结果表明,基线解算中,8个节点的加速比达到了6.39;网平差计算中,4个节点的平均加速比达到了3.04。
This paper employs distributed computing, with high performance computing, transmission and storage capabilities, to address the weaknesses of limited station numbers and poor timeliness found in conventional centralized data processing when handling massive GNSS data. We discuss GNSS distributed data processing methods, algorithm designing methods, processing strategies and the usage of existing software. After GNSS data distributed computing experiments, results show that for: 1) baseline solutions, speedup reached 6.39 for eight nodes; and 2) network adjustment, an average speedup reached 3.04 for four nodes.