位置:成果数据库 > 期刊 > 期刊详情页
基于X射线图像的厚钢管焊缝中气孔缺陷的自动检测
  • ISSN号:1001-9081
  • 期刊名称:计算机应用
  • 时间:2017
  • 页码:849-853
  • 期号:03
  • 便笺:51-1307/TP
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者地址:上海交通大学电子信息与电气工程学院;宝山钢铁股份有限公司研究院;宝山钢铁股份有限公司钢管条钢事业部;
  • 作者机构:[1]上海交通大学电子信息与电气工程学院,上海200240, [2]宝山钢铁股份有限公司研究院,上海201900, [3]宝山钢铁股份有限公司钢管条钢事业部,上海201900
  • 相关基金:国家自然科学基金资助项目(61375020).
中文摘要:

由于厚钢管X射线图像强度分布不均匀,对比度低、噪声大,且气孔缺陷的大小、形状、位置、对比度各异,使得自动检测各种类型的气孔较为困难。针对传统缺陷检测算法中手工标记缺陷数据工作量大,焊缝边缘难以准确提取等问题,提出一种新的无监督学习的各种气孔缺陷检测算法。首先,采用快速独立分量分析从钢管X射线图像集合中学习一组独立基底,并用该基底的线性组合来选择性重构带气孔缺陷的测试图像;随后,测试图像与其重构图像相减获得差异图像,通过全局阈值从差异图像中将各种气孔分割出来。实验的训练集有320幅,测试集有60幅图像,所提算法检测结果的平均敏感性和准确率为90.5%和99.7%。实验结果表明,该算法无需手工标记数据或提取焊缝边缘,可准确检测各种气孔缺陷。

英文摘要:

Due to the intensity distribution of X-ray image of thick steel pipe is not uniform, the contrast is low, the noise is big, and the size, shape, position and contrast of the blowholes defects are different, it is difficult to detect various types of blowholes automatically. Aiming at the problems that the traditional defect detection algorithm has a large workload of manually marking defect data, and the edge of the weld is difficult to accurately extract and other issues, a new unsupervised learning algorithm was proposed for the detection of various blowholes defects. Firstly, fast Independent Component Analysis (ICA) was used to learn a set of independent base vectors from the steel pipe X-ray image set, and a linear combination of the base vectors was used to selectively reconstruct the test image with blowholes defect. Then, the test image was subtracted from its reconstructed image to obtain the difference image, and the various blowholes were separated from the difference image by global threshold. There were 320 images in the training set anti 60 images in the test set. The average sensitivity and accuracy of the proposed algorithm were 90.5% anti 99.7%. The experimental results show that the algorithm can accurately detect all kinds of blowholes defects without manual marking the data or extracting the edge of the weld.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679