位置:成果数据库 > 期刊 > 期刊详情页
"Digital earth" in support of an online oceanic educational public service and popularization
  • ISSN号:0253-505X
  • 期刊名称:Acta Oceanologica Sinica
  • 时间:2013.5.5
  • 页码:82-86
  • 分类:TP701[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中国科学院遥感与数字地球研究所,北京100101, [2]中国科学院大学,北京100049
  • 相关基金:国家自然科学基金(编号:41271367,41101398,61074132);国家高技术研究发展计划(863计划)(编号:2013AAl2A401);水利部公益性行业科研专项(编号:201201092)
  • 相关项目:九龙江流域非点源污染景观源汇格局及其尺度依赖性研究
中文摘要:

提出“全域一局部”遥感信息分布提取模型,通过计算和整合影像局部范围内的空间和光谱特征来优化全域上光谱混淆较大像元的提取精度。模型分为两个主要计算步骤:“全域”前分类与“局部”后分类;“全域”前分类将仅划分出满足一定精度阈值标准的像元,而“局部”后分类则在此部分分类结果基础上,进一步发掘和计算已分类像元所蕴含的信息来辅助对全域未分类像元的提取。在不透水面专题提取过程中,采用支持向量机SVM作为前分类器,通过控制精度阈值所对应的分类后验概率产生部分分类结果;采用调节最小距离分类器作为后分类器,根据一定的权重整合像元局部范围内的空间与光谱信息,代替了传统的全域光谱信息来优化分类。实验采用TM5影像以及所对应的NLCD(National Land CoverData)标准不透水面产品作为测试集,“全域-局部”模型对应单-SVM模型的提取精度由80.31%提高为82.73%,局部后分类器精度较单-SVM模型由54.27%提高到59.94%。实验证明该模型具有较明显的精度提升且能够较好地解决不透水面与裸土混淆的问题,并得到空间形态上更为完善的不透水面提取结果。

英文摘要:

This paper presents a "global-local" remote sensing information extract model, which extracts and integrates the spatial and spectral characteristics within the images' local area. The model can optimize the accuracy of extraction on the pixels with spectral fuzzy. The model can be briefly described into two steps: "global" prior classifier and "local" posteriori classifier. The "global" priori classifier will only classify pixels which are above certain accuracy thresholds, and the "local" posteriori classifier will further explore the information of the already classified pixels from the partial-classified results. The local information will be used to classify the unclassified pixels at the global scale. When extraction of Impervious Surface Area (ISA) experiment, we used Support Vector Machine (SVM) as a priori classifier, which is controlled by an accuracy threshold to output the partial-classified results. We also used an Adjust Minimize Distance Classifier (AMDC) as the posteriori classifier, which integrates the spatial infor- mation within local area around the unclassified pixels to classify the pixels with high degree of difficulty of classification by only spectral information. The experiment on the Landsat TM5 image and corresponding National Land Cover Database (NLCD) pro- ducts as reference indicates that "global-local" model enhanced the accuracy from 80.31%, which is provided by SVM model, to 82.73%. Meanwhile, the accuracy of posteriori classifier was enhanced fi'om 5427% (SVM) to 59.94%. The results proved that combine with spatial and speclral information is an effective way for ISA extraction and the "globle-local" model can improve the accuracy of ISA extraction and can obtain more spatially explicit results.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《海洋学报:英文版》
  • 主管单位:
  • 主办单位:中国海洋学会
  • 主编:潘德炉
  • 地址:北京海淀大慧寺路8号
  • 邮编:100081
  • 邮箱:hyxbe@263.net
  • 电话:010-62179976
  • 国际标准刊号:ISSN:0253-505X
  • 国内统一刊号:ISSN:11-2056/P
  • 邮发代号:82-285
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,美国科学引文索引(扩展库),英国科学文摘数据库,英国动物学记录
  • 被引量:331