应用基于磁动力学方程的宏观唯象模型,研究了弱外磁场下纳米尺度赝自旋阈结构的电流感应磁化翻转效应.在统一考虑铁磁/非磁界面的自旋相关散射以及铁磁层中的自旋积累和弛豫过程后,给出了赝自旋阀结构在弱外磁场下的磁化翻转条件和临界电流.对该效应的数值计算解释了弱外磁场下赝自旋阀结构的电阻-电流回线的偏移,并给出了用外磁场控制电流感应磁化翻转效应中的临界电流方法.
The current induced magnetization switching (CIMS) in a nano-scale pseudo-spin-valve (PSV) structure at low external magnetic filed is investigated using a macroscopic phenomenological model based on the magneto-dynamic equation. Magnetization reversal conditions and the corresponding critical currents are obtained by considering both the spin-dependent scattering at the ferromagnetic/nonmagnetic interfaces and the relaxation of spin accumulation in the ferromagnetic layer. The movement of the resistance-current hysteresis of the PSV structure at low external magnetic filed are explained by the calculation. The way to control the crucial current in the CIMS effect with an external magnetic field is also suggested.