位置:成果数据库 > 期刊 > 期刊详情页
资料同化中背景场位势高度误差统计分析的研究
  • ISSN号:1006-9895
  • 期刊名称:《大气科学》
  • 时间:0
  • 分类:P413[天文地球—大气科学及气象学]
  • 作者机构:[1]中国气象科学研究院,北京100081, [2]中国科学院研究生院,北京100049
  • 相关基金:国家自然科学基金资助项目 40233036,国家“十五”科技攻关计划项目(2004BA607B)
中文摘要:

在客观分析中,背景误差协方差对观测信息的传播和平滑、反映不同变量之间的关系有着非常重要的作用.构造合理的背景误差协方差矩阵对于同化系统至关重要,甚至会决定同化分析的好坏.作者主要利用观测余差方法,用T213预报资料和无线电探空观测资料统计我国区域的背景位势高度误差协方差样本,分析背景误差协方差场的结构特征和拟合误差场的空间分布.

英文摘要:

Background error covariance is very important to govern the amount of smoothing and spreading of the observed information and to decide the relationships between different variables in variational data assimilation. Because of the existence of a balance in the reality and in the model state, there is a version of the balance that exists in the background error covariances. Background error covariances depend on the uncertainty of the previous analysis and forecast. To a large extent, the form of this background error covariance governs the resulting objective analysis. With the development of data assimilation, the methods to estimate the forecast error correlation structure have been reported in many literatures. However there is a little work about background error covariance in our country and the work is needed in the operational data assimilation system and GRAPES (Global and Regional Assimilation and PrEdiction System) 3D Var (three-Dimensional Variational data assimilation) research. So the statistical struc- ture of background error covariance is studied in this paper. It is difficult to directly get error covariances, which can only be estimated in a statistical sense. In order to get the height background error covariance, the innovation vector method is used in this paper. The data consist of innovation data (12 h and 24 h predicted height of T213 model minus radiosonde measurements) at 0000 UTC and 1200 UTC. Horizontal characteristic length, prediction error variance and observation error variance are obtained using Gauss correlation function approximation in a particular level. The straightforward way and the empirical thickness method are used to get the approximate function in interlevel values. In the vertical direction, vertical covariance approximation is obtained by the second-order autoregressive (SOAR) correlation function and distance transformation method, The resulting three-dimensional approximation function is partially separable, which is the product of the horizon

同期刊论文项目
期刊论文 52 会议论文 8
同项目期刊论文
期刊信息
  • 《大气科学》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院大气物理研究所
  • 主编:陆日宇
  • 地址:北京德胜门外祁家豁子 北京9804信箱
  • 邮编:100029
  • 邮箱:dqkx@mail.iap.ac.cn
  • 电话:010-82995051 82995052
  • 国际标准刊号:ISSN:1006-9895
  • 国内统一刊号:ISSN:11-1768/O4
  • 邮发代号:2-823
  • 获奖情况:
  • 2000年中国科学院优秀期刊二等奖,中国科技论文统计分析数据库来源期刊,中国科学引文数据库收录,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22063