位置:成果数据库 > 期刊 > 期刊详情页
新型加权粗糙朴素贝叶斯算法及其应用研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]河南理工大学计算机科学与技术学院,河南焦作454000, [2]吉林大学计算机科学与技术学院,长春130012
  • 相关基金:国家自然科学基金资助项目(51174263,61300216); 国家教育部博士点基金资助项目(20124116120004); 河南省教育厅科学技术研究重点项目(13A510325)
中文摘要:

待分类数据集中通常存在大量的冗余属性,会严重影响分类效率。为了达到在降低计算复杂度的同时提高分类准确率的目的。首先在朴素贝叶斯模型中引入粗糙集技术对数据集进行属性约简,获取最优属性子集;然后在此基础上以最大化数据集的对数条件似然估计为标准对条件属性设定(近似)最优权值,进而提出一种新型加权粗糙朴素贝叶斯模型。通过在垃圾邮件过滤领域对该模型进行实际验证表明,贝叶斯模型的分类效率有明显提高,而且分类性能更加稳定,证明该方法不仅可以有效去除冗余属性,而且为条件属性赋予的权值较之传统加权方法更加合理。

英文摘要:

There are usually a lot of redundant attribute stay in data set, which can seriously influence efficiency of dataset classfication. In order to achieve the goal of reducing the computational complexity, and improving the accuracy of classification at the same time, this paper introduced rough set technology into naive Bayes model for attribute reduction to obtain the optimal attributes subset. Then, on this basis, took conditional of logarithmic likelihood estimation of data set as standard to set the (approximate) optimal weights for the attribute, and proposed a novel kind of weighted rough naive Bayes model. The practical classification performance of this model in the filed of spare filter show that the classification efficiency of the Bayes model is obviously improved, and the classification performance is more stable, which proves that the method can eliminate the redundant attributes effectively, and the weight value that set for attribute is more reasonable than the traditional weighted method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049