位置:成果数据库 > 期刊 > 期刊详情页
支持时序数据聚合函数的索引
  • ISSN号:1000-0054
  • 期刊名称:《清华大学学报:自然科学版》
  • 时间:0
  • 分类:TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]清华大学软件学院,北京100084, [2]清华信息科学与技术国家实验室筹,北京100084
  • 相关基金:国家自然科学基金资助项目(61325008)
中文摘要:

时序数据是工业新发展的关键,其中针对时序数据的聚合操作成为主要的应用场景之一。传统关系型数据库不足以支撑海量的时序数据,而现有的NoSQL数据库对时序数据的聚合操作显得低效耗时。该文提出了一种结合概要表和线段树思想的支持时序数据聚合操作的高效索引机制,并实现了基于这种索引机制的查询算法。该查询算法将概要表的思想引入NoSQL中,缩小了待查询数据集,并通过在概要表上建立概要森林的形式,将最坏情况下的待查询数据集进一步缩小为索引个数的lbn倍。此外,该算法通过计算直接定位出待查询的一系列索引数据,有效避免了一般树形结构的递归遍历操作,减少了大量的磁盘开销。最后,通过与一般索引机制的查询对比实验,验证了该索引机制的可用性和高效性。

英文摘要:

Time-series data is the key to industrial development,with the aggregation of the data an important step in practice.However,traditional relational databases fail to support vast amounts of time-series data.The NoSQL databases are inefficient and require time-consuming calculation to aggregate of time-series data.This paper presents an efficient index mechanism that supports time-series data aggregation by combining a synopsis table and a segment tree.A query algorithm based on this mechanism introduces the synopsis table into the NoSQL database and builds a segment tree from the synopsis table for archiving that is lbn the size of the original query set.This query algorithm can directly locate a series of index data to be queried without the recursive operations in traditional trees and effectively reduces I/O overhead. This study shows the efficiency of this index mechanism by comparisons with general index mechanisms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《清华大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:清华大学
  • 主编:梁恩忠
  • 地址:北京市海淀区清华大学学研大厦B座908
  • 邮编:100084
  • 邮箱:xuebaost@tsinghua.edn.cn
  • 电话:010-62788108 62792976
  • 国际标准刊号:ISSN:1000-0054
  • 国内统一刊号:ISSN:11-2223/N
  • 邮发代号:2-90
  • 获奖情况:
  • 国家期刊奖,国家“双高”期刊,1992年以来,历次国家级和省部级一等奖,第一、二届全国优秀科技期刊一等奖,教育部优秀期...,第三届中国出版政府奖提名奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,美国应用力学评论,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:43470