肽核酸是人工合成的寡核苷酸类似物,以N-(2-氨乙基)甘氨酸结构单元替代DNA分子中的戊糖-磷酸结构。与天然核酸相比,肽核酸可以更高效地与DNA或RNA特异性杂交,在分子生物学和基因药物领域具有良好的应用前景。但是,肽核酸骨架呈电中性,难以高效穿过细胞膜,这成为工程应用的最大障碍。为了改善肽核酸的细胞转运性能,对肽核酸进行化学修饰是近年来的研究热点。结合近十年来文献报道和本实验室的工作,对肽核酸的骨架修饰和配合物结合修饰两类增强细胞转运的修饰方法进行综述,并对修饰性肽核酸细胞转运研究中存在的问题以及未来的研究趋势及其应用提出了见解。
Peptide nucleic acid(PNA) is a DNA surrogate in which the phosphate deoxyribose backbone of DNA is replaced by repeating N-(2-aminoethyl)glycine units. PNA can hybridize to the complementary DNA and RNA with higher affinity than their oligonucleotide counterparts. This character of PNA not only makes it a new tool for the studies of molecular biology but also the potential candidate for gene-targeting drugs. The non-ionic backbone of PNA leads to stable hybrids with the nucleic acids, but at the same time, the neutral backbone results in poor cellular uptake. To address this problem, studies on modified PNA progress rapidly in recent years. We reviewed literature reports combined with our study about the delivery methods, including backbone modified PNA and PNA-ligand conjugates, and the cellular uptake of modified PNA. In addition, we summarized the problems and future prospect of the cellular delivery of modified PNA.