对于(R^n,0)中一般的代数集芽S研究了在右等价群缓的子群Rs={φ∈R|φ|,=idi}的作用下函数芽的有限决定性.给出了函数芽为k-Rs-决定的一个条件,推广了Kushner等人的结果,且在某些时候它可以给出比Kushner的结果更精确的判断.
Finite determinacy for C∞ function germs relative to the subgroup Rs={φ∈R|φ|,=idi} of the right equivalence group R is studied,where S is an algebraic set germ in (R^n ,0). The main result of this note is a conditon of k -Rs-determinacy for C∞ function germs, it generalizes some results of Kushner et al. in some sense,and can be used to get more sharp estimation.