首先用马来酸酐、对氨基苯酚为原料合成N-对羟基苯基马来酰亚胺(HPM),然后用合成的HPM、4,4-二氨基二苯醚(ODA)和多聚甲醛为原料进行曼尼希反应合成出含双马来酰亚胺的苯并嗪(HPM-BOZ),经高温固化后形成热固性树脂。用FTIR、1H NMR、13C NMR分析了HPM和HPM-BOZ的化学结构,证实了所得的为目标产物;用DSC对HPM-BOZ的固化特性进行研究,用TGA分析了HPM-BOZ的固化物的热稳定性;用SEM分析了树脂的断裂面。结果表明:HPM-BOZ在235℃和266℃出现了两个固化峰;在氮气条件下,热分解温度为410℃,失重5%的温度为438℃,在800℃的残碳率为60.2%。
A novel bismaleimide-benzoxazine resin(abbreviated as HPM-BOZ)was synthesized by three steps. Firstly, N-p-hydroxylphenylmaleimide(HPM)was prepared from maleic anhydride and p-aminophenol. Secondly, HPM, 4,4-2 amino diphenyl ether(ODA) and paraformaldehyde were used as raw materials to prepare HPM-BOZ with Mannich reaction. Thirdly, a novel bismaleimide-benzoxazine resin was fabricated by a specific curing process. The chemical structure of HPM and HPM-BOZ was characterized by FTIR, ^1H NMR and ^13 C NMR. Section fracture surface of the resin was analyzed by SEM. The curing behavior of HPM-BOZ was characterized by DSC with two peaks at about 235℃ and 266℃ appeared during its curing, respectively. TGA curves demonstrated that HPM-BOZ had excellent thermal stabilities under the condition of nitrogen, which began to decompose at 410℃ with 5% mass loss temperature of 438℃ and obtained 60.2% char yield at 800℃.