合成了一种新型的发光材料水杨醛缩苯胺锌(SAZ),利用真空热蒸镀制备了高质量、纳米级薄膜,利用红外光谱、差热-热重谱、X射线衍射谱、UV-Vis吸收谱、荧光光谱研究了水杨醛缩苯胺锌及其薄膜的结构、晶态、热稳定性以及光学特性,并利用循环伏安法、UV-Vis吸收谱确定了该材料的能级结构。结果表明,水杨醛缩苯胺锌无定性薄膜具有较高的热稳定性,在紫外光激发下产生绿色荧光,色纯度高,亮度高。水杨醛缩苯胺锌薄膜在大气环境下存放,荧光衰减比8-羟基喹啉铝快,但受紫外光照射时,荧光衰减比8-羟基喹啉铝慢。水杨醛缩苯胺锌的HOMO能级为-5.659eV,LUMO能级为-3.054eV,禁带宽度为2.604eV。
A new light emitting material, salicylaldehyde anil zinc (SAZ), was synthesized. It can form high quality nano-scale amorphous thin films on clean glass substrates by vacuum evaporation. Its structure, crystallization, thermal stability, and optical property were investigated by IR spectra, DTA-TG analysis, XRD spectra, UV-Vis spectra, and fluorescence spectra. Its energy band structure was confirmed by cyclic voltammogram and optical absorption band edge. Results show that the SAZ film is a thermally stable material, and can emit intense green fluorescence with a peak wavelength at 508 nm and a full width at halfmaximum of 90. 2 um under UV irradiation. Its HOMO energy level is about -5. 659 eV, LUMO energy level is about -3. 054 eV, optical gap band is about 2. 604 eV. The fluorescence decay of stored films under ambient atmosphere is more rapid than that of 8-hydroxyquinoline aluminum films. However, the fluorescence decay of the films under UV irradiation is slower than that of 8-hydroxyquinoline aluminum films.