密封圈二维有限元分析中,常将密封圈接触面上最大接触压力推广到整个接触面上,针对这种不够精确的方法,提出了一种基于三维仿真模型的有效接触压力高精度计算方法。建立组合密封圈的三维模型,模拟实际工况,对影响其动密封特性的轴往复运动速度、轴转速、介质压力、O形圈压缩量、滑环厚度、滑环动接触面开槽进行了研究,并利用有效接触压力计算方法分析了动接触面上有效接触压力的分布情况。结果表明:滑环开槽、滑环厚度、O形圈压缩量以及介质压力对组合密封圈有效接触压力影响较大,内轴往复速度以及转速达到一定值后对有效接触压力影响较大。研究结果为滑环式组合密封圈的优化设计提供了参考。
The calculation which applied the traditional 2D FEA to generahze the maximum contact stress on a single-contact line of the sealing ring to the whole contact surface was not an accurate algo- rithm. In view of it, a more accurate and effective contact stress calculation method was proposed based on the 3D simulation model herein. Some different 3D models of the combined sealing ring were established through simulating the actual working conditions, and the method was used to analyze the effective contact stress distribution under the different effect factors of the dynamic seal characteris- tics, such as the reciprocating motion speeds, the revolving speeds, the medium pressures, the O- ring compressions, the thicknesses of the slip rings and the slottings on the moving contacts. The re- suits show that the slottings on the moving contacts, the thicknesses of the slip ring, the O-ring com- pressions and the medium pressures have a great influence on the values of effective contact stresses; when the reciprocating motion speeds and the revolving speeds of inner shaft exceed a critical value, they have an influence on the values of the effective contact stresses. The results of this paper provide a reference for the optimization design of slip ring combined seals.