位置:成果数据库 > 期刊 > 期刊详情页
杨-巴克斯特自旋1/2链模型的量子关联研究
  • ISSN号:1000-3290
  • 期刊名称:《物理学报》
  • 时间:0
  • 分类:O413.1[理学—理论物理;理学—物理]
  • 作者机构:[1]长春理工大学理学院,长春130022
  • 相关基金:国家自然科学基金(批准号:11305020)资助的课题
中文摘要:

量子系统各部分间的量子关联可以作为量子信息应用研究的基础资源.而量子失协是度量量子关联大小的物理量.由此研究杨-巴克斯特自旋1/2链模型的量子关联情况.首先利用两个杨-巴克斯特方程的解得到相应的杨-巴克斯特自旋1/2链模型.然后,计算分析热平衡时杨-巴克斯特自旋1/2链模型的量子失协、几何量子失协和量子纠缠随着温度和外磁场的变化情况.结果表明对于杨-巴克斯特自旋1/2链模型,量子失协和几何量子失协能够比量子纠缠更好地度量量子关联.

英文摘要:

Quantum correlations among different parts of a composite quantum system are the fundamental resource of several applications in quantum information. In general, quantum discord can measure quantum correlations. In that way, the quantum correlations in the Yang-Baxter spin-1/2 chain mode are investigated. In the second part of the paper, the Yang-Baxter spin-1/2 chain modes are constructed from the Yang-Baxter equation. First, we analyze the two matrix representations of Temperly-Lieb algebra. Second, the two solutions of the Yang-Baxter equation are generated using the Yang-Baxterization. Finally, we can change the usual two-particle spin-1/2 chain to the Yang-Baxter spin-1/2 chain modes by means of the unitary Yang-Baxter matrix-R. In the third part, the density matrices of the two chain modes are generated in the thermal equilibrium state in a canonical ensemble. According to the definition of the geometric measure of quantum discord, the analytical expressions of the geometric measure of quantum discord, in the temperature and the external magnetic field, are obtained for the Yang-Baxter spin-1/2 chain modes. When the temperature and the magnetic field intensity increase, the geometric measure of quantum discord decreases. Under the specific conditions,the result of the second chain mode is similar to that of the first one. Then we obtain the numerical results of quantum discord, the geometric measure of quantum discord, and concurrence. It is found that the concurrence can quickly decrease to the value of zero when the temperature is greater than the value of one. At the same time, quantum discord and the geometric measure of quantum discord are not of the value of zero. Thus the quantum discord and the geometric measure of quantum discord can go beyond the concept of entanglement and obtain the "quantumness" of the correlations between the two parts of a system for the Yang–Baxter spin-1/2 chain modes. They are very good quantum resources for quantum information and quantum computing.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《物理学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国物理学会 中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京603信箱(中国科学院物理研究所)
  • 邮编:100190
  • 邮箱:apsoffice@iphy.ac.cn
  • 电话:010-82649026
  • 国际标准刊号:ISSN:1000-3290
  • 国内统一刊号:ISSN:11-1958/O4
  • 邮发代号:2-425
  • 获奖情况:
  • 1999年首届国家期刊奖,2000年中科院优秀期刊特等奖,2001年科技期刊最高方阵队双高期刊居中国期刊第12位
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:49876