利用Mawhin的连续性定理及迭合度理论,讨论了共振条件下分数阶微分方程cDβ0+α(t)cDα0+x(t)=f(t,x(t),cDβ0+α(t),cDα0+x(t)),t∈[0,1] cDα0+x(0)=0,x(1)=sum from m to i=1 aix(ζi)多点边值问题解的存在性,得到解存在的充分条件,推广了整数阶微分方程共振问题已有的结果.
This paper discusses the existence of solutions for fractional muti-point boundary value problems at resonance cDβ0+α(t)cDα0+x(t)=f(t,x(t),cDβ0+α(t),cDα0+x(t)),t∈[0,1] cDα0+x(0)=0,x(1)=sum from m to i=1 aix(ζi) by using Mawhin’s continuous theorem and coincidence degree theory and the sufficient conditions for the boundary value problems is obtained,generalizing known results about integral differential equation at resonance.