位置:成果数据库 > 期刊 > 期刊详情页
基于RBF神经网络的较低浓度下同步荧光光谱的溢油鉴别
  • ISSN号:1000-0593
  • 期刊名称:《光谱学与光谱分析》
  • 时间:0
  • 分类:O657.3[理学—分析化学;理学—化学]
  • 作者机构:[1]中国海洋大学光学光电子实验室,山东青岛266100, [2]北京师范大学资源学院,北京100875, [3]潍坊学院物理与电子科学学院,山东潍坊261061
  • 相关基金:国家自然科学基金项目(40706037)资助
中文摘要:

针对海面溢油样品的含量难以确定,同时考虑到海水掺杂及风化等问题的影响,提出了在较低非线性浓度范围内采集溢油嫌疑样品的同步荧光光谱,获取其训练样本集,利用主成分分析法(Principal com-ponent analysis,PCA)提取其特征光谱,结合径向基函数(Radial basis function,RBF)神经网络对肇事样本和嫌疑样本进行模式识别的方法。通过对相近油源原油样品分类重庆市科技攻关计划项目任务识别研究表明:该方法仅需单次对肇事样本同步光谱测量,再借助数据分析,就可以很好区分相近油源溢油样品,外扰对识别率影响也不大。RBF神经网络算法识别率在92%左右。该结论对海洋环境中溢油的实时检测及油指纹数据信息库的建立有重要意义。

英文摘要:

In this paper, a new method was developed to differentiate the spill oil samples. The synchronous fluorescence spectra in the lower nonlinear concentration range of 10 2-10 1 g. L 1 were collected to get training data base. Radial basis function artificial neural network (RBF-ANN) was used to identify the samples sets, along with principal component analysis (PCA) as the feature extraction method. The recognition rate of the closely-related oil source samples is 92 %. All the results demonstrated that the proposed method eould identify the erode oil samples effectively by just one synchronous spectrum of the spill oil sample. The method was supposed to be very suitable to the real-time spill oil identification, and can also be easily applied to the oil logging and the analysis of other multi-PAHs or multi-fluorescent mixtures.

同期刊论文项目
期刊论文 12 会议论文 1 专利 1
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642