采用密度泛函理论的广义梯度近似和平面波赝势方法,研究P掺杂单壁硅纳米管对Mg原子的吸附性能.计算本征、掺杂P、施加形变作用(压缩和拉伸)的(6,6)硅纳米管外壁对Mg原子的吸附能,分析掺杂P前后的成键情况及电荷布局数.结果表明,掺杂P使体系形成Mg-P和Si-P间的离子性键,增强了Si-Si间的离子性键,P掺杂硅纳米管超晶格中离子键与共价键共存;掺杂P后显著提高了硅纳米管外壁对Mg原子的吸附能力;硅纳米管外壁对Mg原子的吸附能在0.25%,0.50%,1.00%,1.25%的压缩量和1.00%,1.25%的拉伸量时增大,可显著增强硅纳米管材料作为增强相时与基体界面间结合的粘附性.
Adsorption characteristics of magnesium atoms on phosphorus-doped single-walled silicon nanotubes ( SWSiNTs ) are studied using plane wave pseudopotential method with generalized gradient approximation based on density functional theory. Adsorption energies of magnesium atoms on pure, phosphorus-doped and deformation effects ( compressive or tensile ) ( 6, 6 ) SWSiNTs are calculated. Bond and Mulliken population of both pure and phosphorus-doped SWSiNTs are also analyzed. It shows that covalent bond and ionic bond conexist in armchair silicon nanotube superlattices doped with phosphorus atoms by forming ionic bond of Mg-P and Si-P,and enhancing ionic bond of Si-Si. Adsorption energy of Mg atom on SWSiNTs are improved significantly by doping phosphorus atoms. Adsorption energy are also increased under compressive deformation at 0.25%, 0.50%, 1.00%, 1.25% and tensile deformation at 1.00%,1.25%. It enhances adhesion of interface of silicon nanotubes as reinforce combined with matrix.