选取一种新型的高性能三层复合金刚石薄膜,即硼掺杂微米-未掺杂微米-未掺杂纳米复合金刚石(boron-doped micro-crystalline,undoped micro-crystalline and undoped nano-crystalline composite diamond,BDM-UM-UNCD)薄膜作为铝塑复合管拉拔模具内孔工作表面的耐磨减摩保护涂层,该薄膜具有优异的综合性能。表征结果表明,采用仿真优化的沉积参数在该拉拔模具整个内孔表面沉积了厚度较为均匀(19-24μm)的复合金刚石薄膜,尤其是在主要的工作区域沉积了厚度均匀、质量优异的复合金刚石薄膜;采用机械抛光可以便利地将内孔薄膜抛光到Ra-45nm的表面粗糙度以下。油润滑及水润滑条件下拉拔铝塑复合管的应用试验结果表明,相比于未涂层及其他类型金刚石薄膜涂层拉拔模具而言,该复合金刚石薄膜涂层模具具有很长的使用寿命,并且表现出极佳的应用效果。
A new type of high-performance trilaminar composite diamond film with excellent overall performance,namely boron-doped micro-crystalline,undoped micro-crystalline and undoped nano-crystalline composite diamond,BDM-UM-UNCD film,has been selected as wear-resisting antifriction coating for the inner hole work surface of the PAP(polyethylene-aluminum compound pipe)drawing die.Characterization of it shows that composite diamond film of relatively uniform thickness(19~24μm)and high quality has been deposited on the entire inner hole surface of the drawing die through simulative and optimized deposition parameters,especially on the main work surface;the surface roughness of the film of inner hole can easily reduced to a level of Ra~45nm through mechanical polishing.The application tests of the PAP drawing die under oil and water lubrication conditions show that this type of composite diamond film coated drawing die has a longer service life and presents excellent application result compared to the uncoated or other type of composite diamond film coated drawing die.