位置:成果数据库 > 期刊 > 期刊详情页
基于多GPU并行框架的DNN语音识别研究
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]南京晓庄学院数学与信息技术学院,江苏南京211171
  • 相关基金:国家自然科学基金青年基金项目(61202136)
作者: 杨宁[1]
中文摘要:

提出了深度神经网络DNN的多GPU并行框架,描述了其实现方法及其性能优化,依托多GPU的强大协同并行计算能力,结合数据并行特点,实现快速高效的深度神经网络训练.对语音识别应用,在模型收敛速度和模型性能上都取得了有效提升——相比单GPU有4.6倍加速比,数十亿样本的训练数天收敛,字错率降低约10%.

英文摘要:

A Muhi-GPU parallel framework o{ DNN is given out, and the implementation method and its performance optimization are presented, relying on the powerful synergy parallel computing ability of Muhi-GPU, combining with the characteristics of data parallel, the fast and efficient training of Deep Neural Network is realized. The application of speech recognition, the model convergence rate and model performance have achieved effective promotion. Compared with single GPU, it has 4. 6 times speedup ratio, billions of training days convergence, and word error rate is reduced about 10%.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909