位置:成果数据库 > 期刊 > 期刊详情页
Hilbert边际能量谱在语音情感识别中的应用
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TN912[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]长沙理工大学 计算机与通信工程学院,长沙410114
  • 相关基金:基金项目:国家自然科学基金(No.61170199).
中文摘要:

情感特征的提取是语音情感识别的重要方面。由于传统信号处理方法的局限,使得提取的传统声学特征特别是频域特征并不准确,不能很好地表征语音的情感特性,因而对情感识别率不高。利用希尔伯特黄变换(HHT)对情感语音进行处理,得到情感语音的希尔伯特边际能量谱;通过对不同情感语音的边际能量谱基于Mel尺度的比较分析,提出了一组新的情感特征:Mel频率边际能量系数(MFEC)、Mel频率子带频谱质心(MSSC)、Mel频率子带频谱平坦度(MSSF);利用支持向量机(SVM)对5种情感语音即悲伤、高兴、厌倦、愤怒和平静进行了识别。实验结果表明,通过该方法提取的新的情感特征具有较好的识别效果。

英文摘要:

Emotional feature extraction plays an important role in speech emotion recognition. Due to the limitations of traditional signal processing methods, traditional phonetic features, especially in terms of frequency domain features, are unable to reflect precisely phonetic emotional characteristic, which leads to a low emotion recognition rate. This paper proposes a new method. Firstly, Hilbert-Huang Transform(HHT)is used in order to process speech signal, thus to obtain Hilbert marginal energy spectrum. Then, a comparison and relative analysis based on Mel-scale is carried out, afterwards a new array of emotional features are obtained, which consists of Mel-Frequency Marginal Energy Coefficient(MFEC), Mel-frequency Sub-band Spectral Centroid(MSSC)and Mel-frequency Sub-band Spectral Flatness(MSSF). Finally, the five kinds of speech emotion namely sadness, happiness, boredom, anger and neutral are recognized by using the Support Vector Machine(SVM). The experimental results show that the new emotional features extracted by this method have better recognition performance.

同期刊论文项目
期刊论文 36 会议论文 7
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887