An efficient approximate scheme is presented for wave-propagation simulation in piecewise heterogeneous media by applying the Born-series approximation to volume-scattering waves. The numerical scheme is tested for dimensionless frequency responses to a heterogeneous alluvial valley where the velocity is perturbed randomly in the range of 5 %–25 %,compared with the full-waveform numerical solution. Then,the scheme is extended to a heterogeneous multilayered model by calculating synthetic seismograms to evaluate approximation accuracies Numerical experiments indicate that the convergence rate of this method decreases gradually with increasing velocity perturbations. The method has a fast convergence for velocity perturbations less than 15 %. However,the convergence becomes slow drastically when the velocity perturbation increases to 20 %. The method can hardly converge for the velocity perturbation up to 25 %.
An efficient approximate scheme is presented for wave-propagation simulation in piecewise heterogeneous media by applying the Born-series approximation to volume-scattering waves. The numerical scheme is tested for dimensionless frequency responses to a heterogeneous alluvial valley where the velocity is perturbed randomly in the range of 5 %–25 %,compared with the full-waveform numerical solution. Then,the scheme is extended to a heterogeneous multilayered model by calculating synthetic seismograms to evaluate approximation accuracies Numerical experiments indicate that the convergence rate of this method decreases gradually with increasing velocity perturbations. The method has a fast convergence for velocity perturbations less than 15 %. However,the convergence becomes slow drastically when the velocity perturbation increases to 20 %. The method can hardly converge for the velocity perturbation up to 25 %.