为有致动器浸透和未知动力学的分离时间的系统的一个班的一个新奇最佳的追踪控制方法在这份报纸被建议。计划基于反复的适应动态编程(自动数据处理) 算法。以便实现控制计划,一个 data-based 标识符首先为未知系统动力学被构造。由介绍 M 网络,稳定的控制的明确的公式被完成。以便消除致动器浸透的效果, nonquadratic 表演功能被介绍,然后一个反复的自动数据处理算法被建立与集中分析完成最佳的追踪控制解决方案。为实现最佳的控制方法,神经网络被用来建立 data-based 标识符,计算性能索引功能,近似最佳的控制政策并且分别地解决稳定的控制。模拟例子被提供验证介绍最佳的追踪的控制计划的有效性。
A novel optimal tracking control method for a class of discrete-time systems with actuator saturation and unknown dynamics is proposed in this paper. The scheme is based on the iterative adaptive dynamic programming (ADP) algorithm. In order to implement the control scheme, a data-based identifier is first constructed for the unknown system dynamics. By introducing the M network, the explicit formula of the steacly control is achieved. In order to eliminate the effect of the actuator saturation, a nonquadratic performance functional is presented, and then an iterative ADP algorithm is established to achieve the optimal tracking control solution with convergence analysis. For implementing the optimal control method, neural networks are used to establish the data-based identifier, compute the performance index functional, approximate the optimal control policy and solve the steady control, respectively. Simulation example is provided to verify the effectiveness of the presented optimal tracking control scheme.