位置:成果数据库 > 期刊 > 期刊详情页
带学习的同步隐私保护频繁模式挖掘
  • ISSN号:1000-9825
  • 期刊名称:《软件学报》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]国际关系学院信息科技系,北京100091, [2]北京大学机器感知与智能教育部重点实验室,北京100871, [3]Department of Computing Science, University of Alberta, Edmonton T6G 2R3, Canada
  • 相关基金:国家自然科学基金(60403041,60473072)
中文摘要:

为了提高挖掘结果的准确性,提出基于样例学习和项集同步随机化的隐私保护频繁模式挖掘方法(learning and synchronized privacy preserving frequent pattern mining,简称LS-PPFM).该方法充分利用不需要隐私保护的个体数据,首先对不需要保护的数据学习,得到样例数据中蕴涵的强关联项,然后在对数据随机化时,将强关联项绑定在一起作同步随机化变换,以保持项与项之间的潜在关联性.实验结果表明,相对于项独立随机化,LS-PPFM能够在略微牺牲一定的隐私保护性的情况下,显著提高频繁模式挖掘结果的准确性.

英文摘要:

To improve the accuracy of mining results, this paper proposes a method of privacy preserving frequent pattern mining, based on sample learning and synchronized randomization of itemset (LS-PPFM). The method utilizes the data of individuals who do not care privacy. First, the data that does not need protecting are learned, and some strongly associated items are obtained. Then, when the data is randomized, the associated items are bound together and randomized synchronously to try to keep their potential associations. Experimental results show that compared with independent randomization, LS-PPFM can achieve significant improvements on accuracy, while losing a little privacy.

同期刊论文项目
期刊论文 14 会议论文 12
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609