利用不动点指数理论,讨论了含无数个间断点的脉冲Sturm-Liouville方程边值问题(p(t)x′(t))′+f(t,x(t))=0,t∈[0,1],t≠tk;-△x′|t-tk=Ik(x(tk)),k=1,2…,α1x(0)-β1p(0)x′(0)=0,α2x(1)-β2p(1)x′(1)=0的正解的存在性.
Applying the fixed point index theory, the existence of positive solutions is established for the Sturm-liouville boundary value problems of the form (p(t)x′(t))′+f(t,x(t))=0,t∈[0,1],t≠tk;-△x′|t-tk=Ik(x(tk)),k=1,2…,α1x(0)-β1p(0)x′(0)=0,α2x(1)-β2p(1)x′(1)=0.