位置:成果数据库 > 期刊 > 期刊详情页
PSO算法优化BP网络的新方法及仿真实验
  • ISSN号:0372-2112
  • 期刊名称:《电子学报》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]成都信息工程学院,四川成都610041
  • 相关基金:国家自然科学基金(No.50679047,No.50779042)
中文摘要:

提出一种基于粒子群算法优化BP网络的权值调整新方法.该算法在基本BP算法的误差反传调整权值的基础上,再引入粒子群算法的权值修正,从而建立了基于粒子群算法优化的BP网络新模型.此模型不仅可以克服基本BP算法收敛速度慢和易陷入局部极值的局限,而且模型的精度较高,较好地提高了BP网络学习能力与泛化能力.将新模型应用于4个典型复杂函数的仿真实验,并与基本BP模型、基于遗传算法优化的BP网络模型(GA-BP)和传统的粒子群优化前向BP网络模型(PSO-BP前传)的仿真实验结果进行分析比较.仿真实例表明新PSO-BP优化模型性能尤其是泛化性能优于其它3种BP网络优化模型.

英文摘要:

A new method to adjust weights of BP network was proposed based on particle swarm optimization. The new model was based on the weight adjustments of error back propagation of BP algorithm and the weight modification using particle swarm optimization (PSO). The model can not only overcome the limitations both the slow convergence and the local extreme values by basic BP algorithm, but also improve the learning ability and generalization ability with a higher precision. The new model was used in simulation test of four typical complex functions, results of which were analysed and compared with that of basic BP algorithm, BP network optimized based on genetic algorithm (GA-BP) and traditional BP network of signal forward propagation based on particle swarm optimization.Results show the performances of new PSO-BP model are superior to that of other 3 kinds of optimized BP network models, especially in generalization ability.

同期刊论文项目
期刊论文 55 会议论文 3 著作 2
同项目期刊论文
期刊信息
  • 《电子学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:郝跃
  • 地址:北京165信箱
  • 邮编:100036
  • 邮箱:new@ejournal.org.cn
  • 电话:010-68279116 68285082
  • 国际标准刊号:ISSN:0372-2112
  • 国内统一刊号:ISSN:11-2087/TN
  • 邮发代号:2-891
  • 获奖情况:
  • 2000年获国家期刊奖,2000年获国家自然科学基金志项基金支持,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:57611