位置:成果数据库 > 期刊 > 期刊详情页
GOSAT卫星温室气体浓度反演误差的分析与评价
  • ISSN号:1000-3177
  • 期刊名称:遥感信息
  • 时间:2013.2.2
  • 页码:65-70
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] P25[天文地球—测绘科学与技术]
  • 作者机构:[1]Key Laboratory of Digital Earth Science, Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China, [2]University of Chinese Academy of Sciences, Beijing 100049, China
  • 相关基金:supported by the National Natural Science Foundation of China (41071234);the Strategic Priority Research Program—Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (XDA05040401)
  • 相关项目:GOSAT卫星的CO2气体浓度反演误差与算法优化研究
中文摘要:

Observations of atmospheric carbon dioxide (CO2 ) from satellites offer new data sources to understand global carbon cycling. The correlation structure of satellite-observed CO2 can be analyzed and modeled by geostatistical methods, and CO2 values at unsampled locations can be predicted with a correlation model. Conventional geostatistical analysis only investigates the spatial correlation of CO2 , and does not consider temporal variation in the satellite-observed CO2 data. In this paper, a spatiotemporal geostatistical method that incorporates temporal variability is implemented and assessed for analyzing the spatiotemporal correlation structure and prediction of monthly CO2 in China. The spatiotemporal correlation is estimated and modeled by a product-sum variogram model with a global nugget component. The variogram result indicates a significant degree of temporal correlation within satellite-observed CO2 data sets in China. Prediction of monthly CO2 using the spatiotemporal variogram model and spacetime kriging procedure is implemented. The prediction is compared with a spatial-only geostatistical prediction approach using a cross-validation technique. The spatiotemporal approach gives better results, with higher correlation coefficient (r2 ), and less mean absolute prediction error and root mean square error. Moreover, the monthly mapping result generated from the spatiotemporal approach has less prediction uncertainty and more detailed spatial variation of CO2 than those from the spatial-only approach.

英文摘要:

Observations of atmospheric carbon dioxide (CO2) from satellites offer new data sources to understand global carbon cycling. The correlation structure of satelliteobserved CO2 can be analyzed and modeled by geostatistical methods, and CO2 values at unsam pled locations can be predicted with a correlation model. Conventional geostatistical analysis only investigates the spatial correla tion of CO2, and does not consider temporal variation in the satelliteobserved CO2 data. In this paper, a spatiotemporal geostatis tical method that incorporates temporal variability is implemented and assessed for analyzing the spatiotemporal correlation structure and prediction of monthly CO2 in China. The spatiotemporal correlation is estimated and modeled by a productsum variogram model with a global nugget component. The variogram result indicates a significant degree of temporal correlation within satelliteobserved CO2 data sets in China. Prediction of monthly CO2 using the spatiotemporal variogram model and space time kriging procedure is implemented. The prediction is compared with a spatialonly geostatistical prediction approach using a crossvalidation technique. The spatiotemporal approach gives better results, with higher correlation coefficient (r2), and less mean absolute prediction error and root mean square error. Moreover, the monthly mapping result generated from the spatiotem poral approach has less prediction uncertainty and more detailed spatial variation of CO2 than those from the spatialonly approach.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《遥感信息》
  • 中国科技核心期刊
  • 主管单位:国家测绘局
  • 主办单位:科技部国家遥感中心 中国测绘科学研究院
  • 主编:张继贤
  • 地址:北京市海淀区北太平路16号
  • 邮编:100039
  • 邮箱:remotesensing@casm.ac.cn
  • 电话:010-88217813
  • 国际标准刊号:ISSN:1000-3177
  • 国内统一刊号:ISSN:11-5443/P
  • 邮发代号:82-840
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:8820