将线性θ-方法用于求解D(α,β1,β2,β3,γ,δ)类非线性中立型延迟积分微分方程,结果表明A-稳定的线性θ-方法(也即1/2≤0≤1)能保持问题本身的渐近稳定性,数值实验验证了所获理论结果的正确性。
Linear θ-methods are adapted for solving a class D ( α,β1,β2,β3,γ,δ) Of nonlinear neutral delay intego-differential equations (NDIDEs). It is proved that an A-stable linear θ-method (i. e. 1/2≤ 0 ≤ 1 ) can preserve the asymptotic stability of the underlying systems of NDIDEs. A numerical test is given, which confirms the theoretieal results in the end.