位置:成果数据库 > 期刊 > 期刊详情页
基于马尔可夫逻辑网的关联规则迁移学习
  • ISSN号:1002-0411
  • 期刊名称:《信息与控制》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中国矿业大学信息与电气工程学院,江苏徐州221116
  • 相关基金:国家自然科学基金资助项目(61273143);教育部新世纪优秀人才支持计划(NCET-10-0765);教育部高等学校博士学科点专项科研基金资助项目(20120095110025);江苏省自然科学基金资助项目(BK20130207)
中文摘要:

针对源领域和目标领域共享知识是规则、结构和逻辑等关联规则的情况,提出一种基于马尔可夫逻辑网的关联规则迁移学习方法.首先利用伪对数似然函数将源领域中马尔可夫逻辑网表示的知识迁移到目标领域中,建立两个领域之间的关联;再通过对源领域进行自诊断、结构更新和目标领域搜索新子句,来优化映射得到的结构,进而适应目标领域的学习。实验结果表明,算法成功地映射了迁移知识,提高了学习模型的精确度.

英文摘要:

An association rule transfer learning method based on Markov logic networks is presented specific to the situation wherein shared knowledge between the source domain and the target domain is associated with knowl- edge containing rules, structure, and logic. Having applied this method by means of a pseudo log-likelihood function, the knowledge in the source domain expressed in a Markov logic network is transferred into the tar- get domain while the link between the two domains is established. By means of a self-diagnosis and structure update in the source domain and a new clause surf in the target domain, the mapped structure is optimized so that it can be adapted to learning in the target domain. The experimental results show that the given algorithm successfully maps the transferred knowledge, and improves the precision of the learning model.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《信息与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院沈阳自动化研究所
  • 主编:王天然
  • 地址:沈阳市南塔街114号
  • 邮编:110016
  • 邮箱:xk@sia.cn
  • 电话:024-23970049
  • 国际标准刊号:ISSN:1002-0411
  • 国内统一刊号:ISSN:21-1138/TP
  • 邮发代号:
  • 获奖情况:
  • 全国优秀期刊三等奖,中科院优秀期刊三等奖,辽宁省优秀期刊一等奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12960