位置:成果数据库 > 期刊 > 期刊详情页
实数遗传算法的改进及性能研究
  • ISSN号:0372-2112
  • 期刊名称:《电子学报》
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学控制与仿真中心,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金(No.60474069)
中文摘要:

提出一种粒子群优化方法(PSO)与实数编码遗传算法(GA)相结合的混合改进遗传算法(HIGAPSO).该方法采用混沌序列产生初始种群、非线性排序选择、多个交叉后代竞争择优和变异尺度自适应变化等改进遗传操作;并通过精英个体保留、粒子群优化及改进遗传算法(IGA)三种策略共同作用产生种群新个体,来克服常规算法中收敛速度慢、早熟及局部收敛等缺陷.通过四个高维典型函数测试结果表明该方法不但显著提高了算法的全局搜索能力,加快了收敛速度;而且也改善了求解的质量及其优化结果的可靠性,是求解优化问题的一种有潜力的算法.

英文摘要:

A new evolutionary learning algorithm (HIGAPSO) based on a hybrid of real-code genetic algorithm (GA) and particle swarm optimization (PSO) is proposed in this paper.In this hybrid algorithm some improved genetic mechanisms,for example initial population produced by chaos sequence, non-linear ranking selection, competition and selection among several crossover offspring and adaptive change of mutation scaling are adopted;also the new population is produced through three approaches,i.e. elitist strategy, PSO strategy and the improved genetic algorithm (IGA) strategy. Through testing four benchmark functions with large dimeusionality, the experimental results show that this new algorithm not only improves the global optimization performance and quickens the convergence speed,but also obtains robust results with good quality, which indicates it is a promising approach for solving global optimization problems.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:郝跃
  • 地址:北京165信箱
  • 邮编:100036
  • 邮箱:new@ejournal.org.cn
  • 电话:010-68279116 68285082
  • 国际标准刊号:ISSN:0372-2112
  • 国内统一刊号:ISSN:11-2087/TN
  • 邮发代号:2-891
  • 获奖情况:
  • 2000年获国家期刊奖,2000年获国家自然科学基金志项基金支持,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:57611