位置:成果数据库 > 期刊 > 期刊详情页
断接下移动终端的简单查询算法研究
  • ISSN号:1000-436X
  • 期刊名称:《通信学报》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]华南理工大学计算机科学与工程学院,广州510006, [2]佛山大学理学院,佛山528000
  • 相关基金:国家自然科学基金项目(No.61171141)、国家自然科学基金青年科学基金项目(No.11201070)资助
中文摘要:

为处理高维稀疏的大规模文档数据,提出一种基于强类别特征近邻传播(SCFAP)的半监督文本聚类算法.聚类过程中,利用少量带类别标签的监督数据,提取具有强类别区分能力的特征项以构建更有效的样本间相似性测度.并在每轮迭代完成后将类别确定性程度最高的未标记样本转移到已标注集,使算法执行效率提高.实验结果表明,这种改进对于近邻传播算法的性能和准确度的提升有较大帮助,在Reuter-21578和20Newsgroups两个相异数据集上,SCFAP算法表现较好的适用性.综合考察聚类微平均P指标和类簇纯度R指标,该算法在少量监督信息辅助下能快速获得较好的聚类结果.

英文摘要:

A semi-supervised text clustering based on strong classification features affinity propagation (SCFAP) is proposed to handle spare document data with large scale and high dimensions. In the clustering process, strong classification features are extracted to construct a reasonable similarity measure by using a small amount of labeled samples. Moreover, in order to improve the execution efficiency of the algorithm, the unlabeled documents with maximum category certainty are transferred from unlabeled collection to labeled collection in each round of iteration. The experimental results show that the irr, provement is greatly helpful to upgrade the performance and accuracy of the classical affinity propagation algorithm. The SCFAP algorithm shows better applicability on Reuter-~21578 and 20 Newsgroups. The micro average F" index and the clustering purity index are synthetically observed, the semi-supervised text clustering algorithm based on SCFAP can get better clustering results rapidly.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《通信学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国通信学会
  • 主编:杨义先
  • 地址:北京市丰台区成寿寺4路11号邮电出版大厦8层
  • 邮编:100078
  • 邮箱:
  • 电话:010-81055478 81055481
  • 国际标准刊号:ISSN:1000-436X
  • 国内统一刊号:ISSN:11-2102/TN
  • 邮发代号:2-676
  • 获奖情况:
  • 信息产业部通信科技期刊优秀期刊二等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:25019