位置:成果数据库 > 期刊 > 期刊详情页
基于文本密度模型的Web正文抽取
  • ISSN号:1003-6059
  • 期刊名称:模式识别与人工智能
  • 时间:2013.4.4
  • 页码:667-672
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学技术大学自动化系,合肥230026, [2]中国科学院合肥智能机械研究所,合肥230031
  • 相关基金:国家自然科学基金项目(No.61070099)、国家科技支撑计划项目(No.2009BAH41806)资助
  • 相关项目:互译语言形态非对称的统计机器翻译模型构造方法研究
中文摘要:

为从大量无关信息中获取有用内容,正文抽取成为Web数据应用不可或缺的组成部分.文中提出一种基于文本密度模型的新闻网页正文抽取方法.主要通过融合网页结构和语言特征的统计模型,将网页文档按文本行转化成正、负密度序列,再根据邻近行的内容连续性,利用高斯平滑技术修正文本密度序列,最后采用改进的最大子序列分割序列抽取正文内容.该方法保持正文完整性并排除噪声干扰,且无需人工干预或反复训练.实验结果表明基于文本密度抽取正文对不同数据源具有广泛的适应性,且准确率和召回率优于现有统计模型.

英文摘要:

In order to obtain useful content encompassed by a large number of irrelevant information, the content extraction becomes indispensable for web data application. An approach of web content extraction based on the text density model is proposed, which integrates page structure features with language features to convert text lines of page document into a positive or negative density sequence. Additionally, the Gaussian smoothing technique is used to revise the density sequence, which takes the content continuity of adjacent lines into consideration. Finally, the improved maximum sequence segmentation is adopted to split the sequence and extract web content. Without any human intervention or repeated trainings, this approach maintains the integrity of content and eliminates noise disturbance. The experimental results indicate that the web content extraction based on the text density model is widely adapted to different data sources, and both accuracy and recall rate of the proposed approach are better than those existing statistical models.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169